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Abstract. The paper is focused on uncertainty quantification of soil-structure
interaction in tunnel linings using a surrogate model in form of Polynomial Chaos
Expansion (PCE). Tunnel design is a complex and complicated task since it is
strongly associated with a great number of load and material uncertainties. More-
over, modelling the soil-structure interaction multiplies the complexity and non-
linearity of a tunnel engineering problems. In order to handle such uncertainties,
finite element method with random input variables has proven to be a very accurate
tool. The probabilistic analysis is typically performed by Monte Carlo simulation
(MC), simulating uncertainties according to their complete probability distribu-
tions and statistical correlations. The computational burden of MC represents the
main obstacle to its use in complex numerical models and it is therefore not prac-
tical for industrial applications. The solution can be an efficient approximation
of the original mathematical model by computationally efficient analytical func-
tion — a surrogate model. In this study, the surrogate model in form of PCE is
utilized, allowing for analytical post-processing (statistical and sensitivity analy-
sis). Uncertainty quantification is focused on estimation of spatial variability of
internal forces caused by the soil-structure interaction.
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1 Introduction

With the rapid advancement of a computer technology and the growing demand for
cost-effective and complex design solutions in the construction industry, numerical
modeling has emerged as the preferred approach in various structural and heavy civil
engineering domains, including tunnel engineering. Finite element (FE) methods have
become essential tools, proving their efficacy in analyzing complex underground struc-
tures by advanced constitutive materials and detailed geometrical simulations. Addition-
ally, numerical modeling facilitates the analysis of intricate geometries, encompassing
non-circular cross-sections, unique interfaces, and junctions.
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In tunnel design and assessment, uncertainties arising from knowledge gaps, random-
ness in soil/rock performance, structure properties and their interactions, or mathematical
indeterminism necessitate the consideration of safety formats and risk-based decisions.
The following four analysis methodologies in literature and design standards quantify
these uncertainties in terms of failure probabilities or structural reliability measures:

e Level I: Uncertain parameters are modelled by a single nominal value, e.g.
characteristic values with partial safety factor design.

e Level II: Uncertain parameters are implicitly modelled with a probability distribution
described by two characteristics, e.g. mean and variance or characteristic value, i.e..
Semi-probabilistic methods.

e Level III: Uncertain quantities are modelled by their distribution functions, and corre-
lations, leading to a calculated failure probability, i.e. full probabilistic Monte Carlo
simulations.

e Risk-based methods: The consequences of failure are also accounted as a design
criterion.

Despite the prevalence of Level I methods amongst practitioners, more advanced
approaches are gaining favor due to their efficiency and rationalization in engineering
verifications. Nevertheless, risk-based and probabilistic methods face challenges in their
implementation due to their reliance on multidisciplinary expertise and computational
power. “Level II” methods are advantageous since they offer a balance between an
accuracy and an efficiency as was shown in the previous work of the authors [1].

This study continues in exploration of the possibilities of advanced analysis methods
in tunnelling, particularly it is focused on the Level III method. The full probabilis-
tic approach of costly mathematical models is unfortunately not feasible in practical
applications and thus we investigate possibilities of surrogate modeling for uncertainty
quantification instead of crude Monte Carlo simulation. The paper initially introduces
theoretical background of polynomial chaos expansion and formal model descriptions.
Comparative calculations are then demonstrated using a plane-strain FE model from a
realistic tunnel project in soft soil and obtained results based on surrogate modelling are
compared to a MC with original FE model as a reference solution.

2 Polynomial Chaos Expansion

Considering a model response ¥ = f(X) to be arandom variable referenced as a quantity
of interest (Qol) with finite variance o2, the polynomial chaos expansion of Qol is in the
following form [2]:

V=X =) bala®, (M

where M is the number of input random variables, B, are unknown deterministic coef-
ficients and v, are multivariate basis functions orthonormal with respect to the joint
probability density function (PDF) of §. The basis functions must be selected in depen-
dence to probability distributions of components of the input random vector X which
must be transformed to the associated standardized variables & [3].
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Further, it is necessary to truncate PCE to a finite number of terms P. Truncated set
of basis functions .4 M.#is typically dependent on given maximal polynomial order p and
M as follows:

AM? = {a € NM:|a| = ¥M, o; <p} @

Deterministic coefficients B, can be obtained by intrusive and non-intrusive
approaches. Non-intrusive methods utilize the original mathematical model (e.g. FE)
as a black-box, which allows for their easy applications in combination with commer-
cial software and thus is typically preferred for industrial applications. The most popular
type of the non-intrusive approach is based on a simple linear regression.

The original mathematical model must be evaluated to obtain a vector of results
corresponding to generated sample points. Once the basis functions are created and
experimental design (ED) is prepared, PCE coefficients can be estimated by ordinary
least square (OLS) regression method. Unfortunately, a truncated PCE solved by OLS
is not highly computationally efficient and cannot be employed for practical examples
with large number of input random variables due to the curse of dimensionality. The
solution is an additional reduction of the truncated basis set by any model-selection
algorithm such as Least Angle Regression (LAR) [4]. LAR automatically detects the
most important basis functions for given ED and create the so called sparse PCE. For
further reduction of computational cost, it is beneficial to employ advanced sampling
schemes for a sequential enrichment of ED [5]. In this paper, UQPy implementation [6] of
an algorithm for construction of a non-intrusive sparse PCE based on LAR is employed
for numerical examples. Powerful post-processing is main advantage of PCE over to
other surrogate models. First of all, thanks to the explicit form of PCE it is possible to
obtain a leave-one-out error Q7 analytically without additional computational demands
which can be further used for an adaptive construction of PCE approximation. Besides the
analytical derivation of Q2 it is possible to derive also the first four statistical moments
directly from deterministic coefficients [7]. Estimated statistical moments can be further
utilized for a global sensitivity analysis [8].

3 Numerical Model

3.1 Model Set-Up

A 2D plane-strain FE model (see Fig. 1) has been developed and analyzed using Abaqus
FE code, featuring the excavation of a sprayed concrete lined tunnel with a cross-sectional
area of 50 m? in a soil medium at a depth of 20 m to the tunnel axis. The tunnel is about
7 m high and 9.5 m wide and consists of 4 radii.

The analyses included three steps:

— a geostatic step where the initial soil pressures were estimated from the density of
the soil material and the specified coefficient of lateral earth pressure,
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Fig. 1. Mesh of the finite element model.

— arelaxation step simulating the stress relief and 3D arching effects during excavation.
This has been realized through the stiffness reduction method, where the soil within
the excavation was assigned lower parameters (Young’s modulus, Poisson’s ratio)
allowing the soil to deform to a new equilibrium before the lining installation (refer
to details of this modelling approach and methodology in [9, 10],

— theundrained excavation step, where the elements inside the excavation were removed
in a single step and the tunnel support was activated.

The FE mesh included 3740 four-node plane-strain elements for the soil (type
CPE4R) and 86 beam elements (type B21) for the lining. The soil elements were assigned
anon-linear Morh-Coulomb plasticity. The sprayed concrete lining elements were mod-
elled with a linear-elastic material model. To account for the stiffer soil response dur-
ing unloading and reloading stress paths, the soil elements below the tunnel axis were
assigned a three times higher stiffness.

3.2 Random Input Parameters

The geological model and the range of parameters used have been selected based on an
extensive survey of available geotechnical informationin [11, 12] and they are anticipated
to be representative of a typical shallow tunneling project in urban environment. In
summary we assumed the following uncertain parameters: Young’s modulus of concrete
E . [13] coefficient of lateral earth pressure Ko, undrained shear strength S, ratio between
the Young’s modulus of the soil and S,, and relaxation factor «, while all other parameters
are kept as deterministic. An overview of the uncertain parameters used is given in
Table 1. The concrete liner was modelled with a constant thickness of 300 mm and a
Poisson’s ratio of v = 0.2.
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Table 1. Input stochastic model parameters, indicating the mean values, the standard deviations
and (in parenthesis) the coefficients of variation for Normal and Lognormal variables or upper
and lower bounds for Uniform distributions.

Input Variable Mean [units] Std (CoV) Distribution
[bounds]

Young’s modulus E. 13 [GPa] 1 (0.08) Lognormal

E/S, ratio 1000 150 (0.15) Normal

Undrained shear strength s, 250 [kPa] 50 (0.2) Normal

Lateral stress coefficient K, 1[-] [0.4, 1.6] Uniform

Relaxation factor « 0.5 [-] [0.1, 0.9] Uniform

3.3 Methodology

The FE model of the concrete lining consists of 86 finite elements and three Qols in
each element (internal forces N, V and bending moments M) are approximated by sep-
arate individual PCEs, i.e. totally 86 x 3 surrogate models were constructed and further
utilized for UQ of the whole structure. Each PCE is constructed by the adaptive sparse
algorithm implemented in UQPy Python package and it is based on ED containing 50
samples generated by Crude Monte Carlo. The maximum polynomial order is automat-
ically selected as p € [3, 10] and a sparse basis set is identified by LAR. Polynomial
basis consists of Legendre and Hermite polynomials associated to Uniform and Nor-
mal random variables respectively, input Young’s modulus is thus first transformed to a
Gaussian space by an iso-probabilistic transformation. Note that a computational cost
of construction of a single PCE is less than a second and thus it is possible to construct
surrogate models for all finite elements in a few minutes and further use them for UQ
without any additional computational cost. In this study, the main task is a statistical
analysis — an estimation of local mean values E[Y|x]and standard deviations o [Ylx] of
internal forces (normal and shear) and bending moments. Design and assessment of
structures is typically based on extreme quantiles estimated from mean values, vari-
ances, and prescribed reliability indices dependent on specific types of structures [14].
Therefore, for the sake of generality, we estimate also quantiles corresponding to +30
in the example.

4 Numerical Results and Discussion

The numerical results are depicted in Fig. 2. The statistical moments and quantiles of
internal forces obtained from PCE (right column) are compared to a reference solution
obtained by MC with 1000 simulations (middle column) and also an estimation from
ED generated by MC and utilized for a construction of PCE containing 50 samples (left
column). As can be seen from identical shapes of internal forces shown in Fig. 2, PCE
leads to consistent results. Detailed insight to numerical results can be seen in Fig. 3. It
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is clear that although a direct estimation from 50 samples leads to a significant under-
estimation of mean values and variance (clearly visible in Fig. 3 for normal forces),
PCE based on the identical samples, and thus identical computational cost, significantly
improves the accuracy of an estimation. This is caused by the fact, that PCE considers
the whole probability distributions of input variables through basis functions instead of
limited point-wise information from samples. Errors can be clearly seen in Fig. 3 show-
ing relative absolute errors between estimations and the reference solution. The most
significant improvement can be seen in both local mean values and standard deviations
of normal forces, while the least significant improvement is for shear forces. However,
extreme values of relative errors are associated to locations with shear forces close to
zero, and thus such errors are not visible in Fig. 2.
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Fig. 2. Geometry of the concrete liner (black) together with estimations of local mean values
(solid) and extreme quantiles (dashed) of normal forces (blue), shear forces (green) and bending
moments (red) by PCE (right), Monte Carlo with 1000 samples (middle) and 50 samples (left).
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Fig. 3. Relative absolute error of local mean values (right) and standard deviations (left) of normal
forces (top), shear forces (middle) and bending moments (bottom) for each element number (both
methods are based on 50 samples in ED)

5 Conclusions

The paper explores possibilities of PCE for UQ as a LEVEL III method for design and
assessment of tunnel linings. The main task was an estimation of uncertain internal forces
caused by a soil-structure interaction affected by input random parameters. It was shown
that PCE is able to greatly reduce the number of numerical simulations in a comparison
to a standard crude MC approach while achieving satisfactory accuracy of estimated
statistical moments. Moreover, thanks to a negligible computational cost of adaptive
sparse solvers for construction of PCE, it was possible to create an independent PCE
for each finite element of the tunnel liner. The obtained set of PCEs was further utilized
for an analytical post-processing — an estimation of local mean values and standard
deviations. Naturally, besides accurate UQ of Qols, PCE can be also utilized further as a
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standard surrogate model for various additional simulations (e.g., a reliability analysis),
and thus it offers an additional value in comparison to standard Monte Carlo analysis
though it might lead to comparable estimation of statistical moments.
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